Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
Tags
- Swift Tuist
- swift 5.9
- RxSwift
- GCD
- Combine
- Subscribe
- swift database
- xcode
- 네트워크 통신
- SwiftUI
- realm
- uitableviewdiffabledatasource
- Subject
- Firebase
- observable
- swift 6
- Firebase Analytics
- arc
- ios database
- SeSAC
- ribs
- swift
- Tuist Swift
- swift db
- combinecocoa
- Tuist
- 카카오뱅크 ios
- JSON
- ios
- KeyPath
Archives
- Today
- Total
천원의 개발
혼동행렬 출력 본문
import matplotlib.pyplot as plt
from sklearn import datasets, metrics
from sklearn.model_selection import train_test_split
digits = datasets.load_digits()
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=6)
X_train, X_test, y_train, y_test = train_test_split(data, digits.target, test_size=0.2) # 데이터 분할
knn.fit(X_train, y_train) # train
y_pred = knn.predict(X_test) # 예측
disp = metrics.plot_confusion_matrix(knn, X_test, y_test)
plt.show()

'딥러닝' 카테고리의 다른 글
필기체 숫자 이미지 분류 (0) | 2022.03.30 |
---|---|
Numpy 기능 정리 (0) | 2022.03.23 |